SCHOTT Xensation® Core

Xensation[®] Core combines advanced technology with continuous innovation. More than just a cover glass, it embodies the commitment of experts to enhancing the break resistance of modern cover glasses. It demonstrates how targeted research and innovation can set new industry standards.

In relevant drop heights of 70 cm or higher, improvements by more than a factor of 10 have been found. Test perfomed with glass thickness of 0.6 mm on coarse sandpaper (#60 grit) using test dummies.

Features

The ultra-dense molecular structure enables an advanced ion exchange process, achieving exceptionally deep chemical strengthening beneath the glass surface. This unique composition gives Xensation® Core unmatched break resistance. Rigorous drop testing shows that smartphones remain intact even after falling from twice the height onto rough surfaces and delivers ten times the survival rate compared to conventional cover glass materials on the market.

Key Benefits

- Outstanding Drop Test Performance: Xensation[®] Core delivers a 10x higher survival rate in drop tests.
- Unmatched Break Resistance: Xensation[®] Core enables smartphones to withstand drops from double the height without breaking.
- Improved scratch resistance: Confirmed in the Knoop scratch test.

Applied load constant / progressive

Knoop scratch test results

Drop Test results on #60 grit sandpaper

SCHOTT Xensation® Core

Mechanical properties	
Density ρ	2.38 g/cm ³
Young's modulus E	78 kN/mm ²
Poisson's ratio v	0.22
Shear modulus G	32 kN/mm ²
Vickers hardness HV	
unstrengthened	610
strengthened *	670

Coefficient of linear thermal expansion $\alpha_{_{(20-300 \circ C)}}$ Transformation temperature T_a Viscosity

Thermal properties

Chemical properties

0.010

0.010

0.011

0.011

0.011

Annealing point at 10 ¹³ dPas	590 °C
Softening point 10 ^{7.6} dPas	820 °C
Working point 10 ⁴ dPas	1190 °C

5.0 · 10⁻⁶ K⁻¹

580 °C

Frequency f_0 [MHz]	Dielectric constant $\boldsymbol{\epsilon}$	Loss tangent tan δ
54	6.1	0.009
480	6.0	0.010

6.0

6.0

6.0

6.0

5.9

Electrical properties (extrapolated)

Hydrolytic resistance acc. to DIN ISO 719	
Hydrolytic class	HGB 1
Equivalent of alkali Na ₂ O per gram of glass grains [µg/g]	21
Acid resistance acc. to DIN 12 116	
Acid class	S3
Half surface weight loss after 6 hours [mg/dm²]	8.5
Alkali resistance acc. to ISO 695	
Alkali class	A2
Surface weight loss after 3 hours [mg/dm ²]	104

Optical properties

825

912

1977

2170

2986

At a Wavelength λ of 595 nm	
Refractive index n of core glass	1.511
Photoelastic constant C [nm/(cm*MPa)]	31.0
Transmittance T [%] (t = 0.70 mm)	> 91

Chemical strengthening *	
Compressive stress CS	capable > 900 MPa
Depth of compressive layer DoCL	capable > 180 μm
4-Point bending strength	capable > 800 MPa

Forms supplied **	
Thickness range	0.50 – 0.70 mm
Sheet size	1150 mm x 950 mm

All values are typical measured values and refer to unstrengthened glass.

Typical values that can be achieved after chemical strengthening process

** Further thicknesses and sheet sizes are available on request

Learn more or get in contact at schott.com/xensation

SCHOTT

carbon neutral