

SCHOTT B 270° offers outstanding optical performance in a wide range of thicknesses. Suitable for a broad range of applications, customers across a wide variety of industries have relied on this highly transparent, super-white modified soda-lime glass for decades thanks to its high quality.

Outstanding transmission

Homogenous refractive index

High stability against solarization

High coefficient of thermal expansion

Fire-polished surface

Easy-to-process

Crystal-clear performance

The crown glass B 270° is designed to deliver consistent transmittance of light across a range of wavelengths, from ultraviolet to near-infrared. SCHOTT uses a selection of high-purity raw materials for the manufacture of this modified soda-lime glass to avoid any discoloration, which gives the glass a beautifully pure super-white look and exceptional clarity.

Wide thickness range

SCHOTT ensures that B 270° fits the broad spectrum of customer requirements by offering a wide thickness portfolio. SCHOTT B 270° is available in a thickness range from 0.3 mm up to 10 mm. This means the need for further processing is reduced to a minimum, if not avoided altogether.

Easy to process

Easy processing of B 270° enables highly cost-effective processing. One of its advantages is the **fast edge processing** – similar to standard soda-lime glass. The **high CTE** of 9.4 (in $10^{-6} \cdot K^{-1}$) is an unique feature compared to other specialty glass materials and makes it **ideal for thermal toughening**. The **high alkaline content** enables **chemical strengthening**. Thanks to its chemically identical **fire-polished surfaces** on both sides, B 270° is well suited for **coating processes**, without additional effort of polishing or tracking of the "tin side".

A broad range of applications

As one of our most popular products, B 270° has been relied upon for decades by our customers for a wide variety of applications, from standard optical components to packaging solutions for consumer electronics. A true all-rounder, B 270° continues to provide versatility and reliability in a vast number of areas.

Filter substrates

IC Packaging

Optical components

Coating substrates

Biotech

SCHOTT B 270®

Key Properties

General

Technical data* in mm		
Dimensions	1.680 x 900900 x 840406 x 258	
Standard thicknesses	 0.9 1.0 1.65 2.0 2.3 2.5 3.0 3.5 4.0 5.0 10.0 	

^{*} Other formats and thicknesses upon request

Optical

Properties	Value
Refractive index n _e	1.5251 ± 0.001
Abbe value $\nu_{_{e}}$	58.3 ± 0.6

Thermal

General Properties	Unit	Value
CTE (Coefficient of thermal expansion) α	in 10 ⁻⁶ · K ⁻¹ (20 °C; 300 °C)	9.4
Mean specific heat capacity c _p	in J/(g·K) (20 °C to 100 °C)	0.8
Transformation temperature T_g	in °C	542

Viscosities	Viscosity lg η in dPas	Temperature ϑ in °C
Strain point	14.5	507
Annealing point	13.0	535
Softening point	7.6	711

Mechanical

Properties	Unit	Value
Density p	in g/cm³	2.56
Young's modulus E	in kN/mm²	71.1
Poisson's ratio µ		0.22
Torsion modulus G	in kN/mm²	29
Knoop hardness	HK 0.1/20	500
Vickers hardness	HV 0.2/25	510

Transmittance values

Luminous transmittance at thickness in mm	τν _{D65} in %
0.9	91.9
2.0	91.7
6.0	91.6

Edge wavelength λc (τ = 0,46) at thickness in mm	Wavelength in mm
0.9	300
2.0	310
6.0	323

Electrical properties

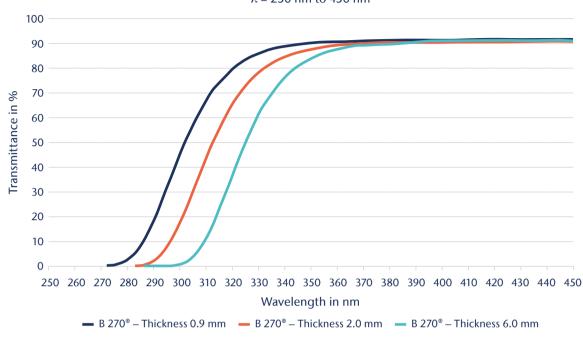
Dielectric constant ε r (at ϑ = 25 °C)	Value
at 1 MHz	7.5
at 1 GHz	6.7
at 5 GHz	6.7

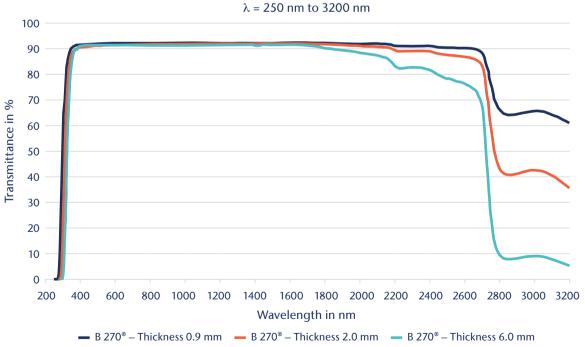
Dissipation factor tan δ (at ϑ = 25 °C)	Value
at 1 MHz	32 · 10-4
at 1 GHz	59 · 10-4
at 5 GHz	84 · 10-4

Chemical

Hydrolytic resistance (acc. to DIN ISO 719)	Value
Class	HGB 3
Equivalent of alkali per gram glass grains in µg/g	136


Acid resistance (acc. to DIN 12116)	Value
Class	S 2
Half surface weight loss after 6 hours in mg/dm ²	0.7


Alkali resistance (acc. to DIN ISO 695)	Value
Class	A 1
Surface weight loss after 3 hours in mg/dm ²	71


SCHOTT B 270®

Spectral transmittance

Spectral transmittance B 270®

