

AR-GLAS®

SCHOTT is a leading international technology group in the areas of specialty glass and glass-ceramics. With more than 130 years of outstanding development, materials and technology expertise we offer a broad portfolio of high-quality products and intelligent solutions that contribute to our customers' success.

With a production capacity of more than 140,000 tons and production sites in Europe, South America and Asia, SCHOTT Tubing is one of the world's leading manufacturers of glass tubes, rods and profiles. Approximately 60 glass types are produced in large outside diameters and a variety of lengths based on strategies in development, production and quality assurance applying to all sites. SCHOTT Tubing provides customized products and services for international growth markets such as pharmaceutics and electronics as well as industrial and environmental engineering.

Content

- 4 AR-GLAS[®] The best in quality and service
- 6–10 Product Range
- 11–12 Physical and Chemical Properties
- 13 Packing

AR-GLAS[®] The best in quality and service

AR-GLAS® for Solar Collectors

AR-GLAS® in the Laboratory

AR-GLAS® for Artistic Applications

AR-GLAS® for Food Packaging

All dimensions shown in this brochure can be ordered online at: www.schott.com/tubing/ecom

Direct contact:

Mr. Dr. Andre Petershans andre.petershans@schott.com

Ordering around the clock

AR-GLAS[®] can be ordered around the clock using our convenient and easy to use online shop. The comprehensive and secure login features make ordering simple. Further information and individual login data are available by phone +49 (0)9633/80-100 or by email at customerservice.tubing@schott.com

Scientific Services

The Scientific Services department of SCHOTT is available to customers for all questions concerning glass properties, processing and the various applications of AR-GLAS[®]. Equipped with its own chemical and physics laboratories this team of qualified experts is optimally suited to handle any question.

Outside Diameter (OD)	Wall Thickness (WT)	Weight per Tube Length approx. 1500mm	Carton/ DENSOPACK [®]	Pallet Load
mm	mm	g	Number Weight of Tubes approx. kg	Weight approx. kg
$\begin{array}{c} \pm 0.09 \\ 4 \\ \pm 0.09 \\ \pm 0.12 \end{array}$	0.50 ±0.02 0.70 ±0.03 0.90 ±0.03	21 27 33	58212.055115.054818.0	540.0 540.0 486.0
$ \begin{array}{c} \pm 0.09 \\ \pm 0.09 \\ \pm 0.12 \end{array} $	0.50 ±0.02 0.70 ±0.03 0.90 ±0.03	27 36 44	37810.036713.039117.0	450.0 468.0 459.0
$6 \overset{\pm 0.10}{\overset{\pm 0.10}{\overset{\pm 0.10}{\pm 0.10}}}_{\pm 0.12}$	0.50±0.020.70±0.030.90±0.031.10±0.03	33 44 54 64	61820.025211.027815.025216.0	420.0 495.0 540.0 432.0
$7 \begin{array}{c} \pm 0.10 \\ \pm 0.10 \\ \pm 0.10 \\ \pm 0.12 \end{array}$	0.50 ±0.02 0.70 ±0.03 0.90 ±0.03 1.10 ±0.03	38 52 65 77	41816.019310.018612.019615.0	448.0 450.0 540.0 540.0
$8 \begin{array}{c} \pm 0.10 \\ \pm 0.10 \\ \pm 0.10 \\ \pm 0.12 \end{array}$	0.50 ±0.02 0.70 ±0.03 0.90 ±0.03 1.10 ±0.03	44 60 76 90	38016.834220.626620.023420.9	352.8 432.6 420.0 438.9
$9 \begin{array}{c} {}^{\pm 0.12}_{\pm 0.12} \\ {}^{\pm 0.12}_{\pm 0.12} \\ {}^{\pm 0.12}_{\pm 0.14} \end{array}$	0.50 ±0.02 0.70 ±0.03 0.90 ±0.03 1.10 ±0.03	50 69 86 103	34017.028919.823820.420420.9	357.0 415.8 428.4 438.9

Outside Diameter (OD)	Wall Thickness (WT)	Weight per Tube Length approx. 1500mm	Carton/ DENSOPACK®	Pallet Load
mm	mm	g	Number Weight of Tubes approx. kg	Weight approx. kg
$10 \begin{array}{c} \pm 0.12 \\ \pm 0.12 \\ \pm 0.14 \\ \pm 0.15 \end{array}$	0.60±0.030.80±0.031.00±0.031.20±0.04	67 87 106 125	27017.924020.816517.516520.5	375.9 436.8 367.5 430.5
$11 \begin{array}{c} \pm 0.12 \\ \pm 0.12 \\ \pm 0.12 \\ \pm 0.14 \\ \pm 0.15 \end{array}$	0.60 ±0.03 0.80 ±0.03 1.00 ±0.03 1.20 ±0.04	74 96 118 139	25618.820820.016919.914319.8	451.2 420.0 417.9 415.8
$12 \begin{array}{c} \pm 0.12 \\ \pm 0.12 \\ \pm 0.14 \\ \pm 0.15 \end{array}$	0.60±0.030.80±0.031.00±0.031.20±0.04	81 106 130 153	23819.219620.715620.212619.2	345.6 372.6 424.2 345.6
13 $\begin{array}{c} \pm 0.12\\ \pm 0.12\\ \pm 0.14\\ \pm 0.15\end{array}$	0.60±0.030.80±0.031.00±0.031.20±0.04	88 115 142 167	20818.218220.914320.211719.5	436.8 376.2 363.6 351.0
$14 \begin{array}{c} \pm 0.12 \\ \pm 0.12 \\ \pm 0.14 \\ \pm 0.15 \end{array}$	0.60±0.030.80±0.031.00±0.031.20±0.04	95 125 154 181	18017.016820.912018.411019.9	408.0 376.2 386.4 417.9
$15 \begin{array}{c} \pm 0.14 \\ \pm 0.14 \\ \pm 0.14 \\ \pm 0.14 \\ \pm 0.18 \end{array}$	0.60±0.030.80±0.031.00±0.041.20±0.04	102 134 165 195	15415.714319.112119.910019.5	376.8 343.8 358.2 409.5

Outs Diamete			nickness /T)	 ght per Tube approx. 1500mm	Cart DENSC		Pallet Load	
, mm	5	Č	\sum_{m}		Number	Weight	Weight	
	I			g	of Tubes	approx. kg	approx. kg	
16	±0.14 ±0.14 ±0.14 ±0.18	0.60 0.80 1.00 1.20	± 0.03 ± 0.03 ± 0.04 ± 0.04	109 144 177 210	143 132 110 99	15.6 18.9 19.4 20.7	374.4 453.6 349.2 434.7	
	±0.14 ±0.14	0.80 1.00	±0.03 ±0.04	153 189	120 100	18.3 18.8	439.2 451.2	
18	±0.18 ±0.19 ±0.19 ±0.23	0.80 1.00 1.20 1.50	± 0.03 ± 0.04 ± 0.04 ± 0.05	163 201 238 292	110 99 81 72	17.8 19.8 19.2 21.0	427.2 356.4 345.6 441.0	
19	±0.18 ±0.19 ±0.23	0.80 1.00 1.50	±0.03 ±0.04 ±0.05	172 212 310	99 90 63	17.0 19.1 19.5	408.0 343.8 351.0	
20	±0.19 ±0.19 ±0.19	0.80 1.00 1.20	±0.04 ±0.04 ±0.05	181 224 266	64 72 72	11.6 16.1 19.1	417.6 386.4 343.8	
	±0.19 ±0.19	0.80 1.00	±0.04 ±0.04	191 236	80 80	15.2 18.8	364.8 451.2	
22	±0.19 ±0.19 ±0.19	0.80 1.00 1.20	$\pm 0.04 \\ \pm 0.04 \\ \pm 0.05$	200 248 294	72 72 64	14.4 17.8 18.8	432.0 427.2 451.2	
23	±0.19 ±0.19 ±0.23	0.80 1.00 1.50	±0.04 ±0.04 ±0.05	209 260 380	63 63 49	13.2 16.3 18.6	316.8 391.2 446.4	

Outside Diameter (C			ght per Tube n approx. 1500 mm	Cartor DENSOP/	•	Pallet Load
mm) n	nm.		Number of Tubes a	Weight Ipprox. kg	Weight approx. kg
24 ±0. ±0.	19 1.20	±0.04 ±0.05 ±0.05	271 323 398	56 56 49	15.2 18.0 19.5	364.8 432.0 351.0
25 $^{\pm 0.}_{\pm 0.}$		±0.04 ±0.05	228 416	56 42	12.8 17.4	307.2 365.4
26 ±0. ±0.	24 1.20	±0.04 ±0.05 ±0.05	295 350 433	48 48 48	14.1 16.8 20.8	338.4 403.2 374.4
28 $\pm 0.1 \\ \pm 0.1 \\ $	24 1.20	±0.04 ±0.05 ±0.05	318 379 468	42 42 42	13.4 15.9 19.7	402.0 381.6 354.6
30 $\pm 0.1 \pm 0.1 $		±0.05 ±0.06	407 503	35 35	14.2 17.6	340.8 422.4
32 $^{\pm 0.}_{\pm 0.}$		±0.05 ±0.06	435 539	30 30	13.1 16.2	393.0 388.8
34 $^{\pm 0}_{\pm 0}$		±0.05 ±0.06	463 574	30 30	13.9 17.2	333.6 412.8
36 $^{\pm 0.}_{\pm 0.}$		±0.06 ±0.07	492 609	20 20	9.8 12.2	343.0 427.0
38 $^{\pm 0.}_{\pm 0.}$		±0.06 ±0.07	520 645	20 20	10.4 12.9	249.6 309.6
40 $^{\pm 0.}_{\pm 0.}$		±0.07 ±0.07	549 680	20 20	11.0 13.6	264.0 326.4

In addition to the dimensions above, different lengths and outside diameters up to 70 mm are available upon request.

Standard length: 1500 mm

Special sizes of tubing between 1200 and 4000 mm long and with an outside diameter range of 18 to 38 mm are available upon request.

Tubing with outside diameters between 5–30 mm can be additionally coated to protect from scratches (minimum quantity is 2 tons).

AR-GLAS® Rod

Outside	Diameter	Carton (Contents	Pallet	
	Ď		7		
m	ım	Number of Rods	Weight approx. kg	Weight approx. kg	
3	±0.10	510	13.5	445.5	
4	±0.15	308	14.5	478.5	
5	±0.15	217	16.0	528.0	
6	±0.15	142	15.0	495.0	
7	±0.20	104	15.0	495.0	
8	±0.20	80	15.0	495.0	
9	±0.20	60	14.3	471.9	
10	±0.25	49	14.4	475.2	
12	±0.25	33	14.0	462.0	
14	±0.30	24	13.8	455.4	
16	±0.35	20	15.1	543.6	
20	±0.50	16	18.8	507.6	
25	±0.70	9	16.6	448.2	

Rod with an outside diameter of up to 30 mm is available upon request.

Standard length: 1500 mm

All tubing and rod dimensions shown in this brochure are available on short notice. All carton contents and weights are approximate.

AR-GLAS® Physical and Chemical Properties

Physical Properties		
Coefficient of mean linear thermal expansion α (20 °C; 3	00°C) acc. to DIN ISO 7991	9.1 · 10⁻⁶ K⁻¹
Transformation temperature T_g		525 °C
Temperature of the glass at viscosity η in dPa \cdot s:	10 ¹³ (annealing point) 10 ^{7.6} (softening point) 10 ⁴ (working point)	530 °C 720 °C 1040 °C
Density ρ at 25 °C		2.50 g · cm ⁻³
Modulus of elasticity E (Young's modulus)		$73 \cdot 10^3 \text{ N} \cdot \text{mm}^{-2}$
Poisson's ratio µ		0,22
Thermal Conductivity λ_w at 90 °C		$1.1 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$
Temperature for the specific electrical resistance of 10 ⁸ S	2 · cm (DIN 52 326) t _{k 100}	200°C
Logarithm of the electric volume resistivity ($\Omega\cdot$ cm)	at 250 °C at 350 °C	7.1 5.7
Dielectric properties (1 MHz, 25 °C)	Dielectric constant (permittivity) ϵ Dielectric loss factor (dissipation factor) tan δ	7.2 70 · 10 ⁻⁴
Refractive index (λ = 587.6 nm) n _d		1.514
Stress-optical coefficient (DIN 52 314) K		2.7 · 10 ⁻⁶ mm ² · N ⁻¹

Chemical Composition

SiO ₂	B ₂ O ₃	K ₂ O	AI_2O_3	Na ₂ O	BaO	CaO	MgO
69	1	3	4	13	2	5	3

main components in approx. weight %

AR-GLAS® Physical and Chemical Properties

Chemical Resistance	
Hydrolytic Class (DIN ISO 719)	HGB 3
Acid Class (DIN 12116)	Class S 1
Alkali Class (DIN ISO 695)	Class A 2

AR-GLAS®

Packing

 \leq OD 7 mm = Cartons \geq OD 8 mm = DENSOPACK[®]

DENSOPACK®:

Tightly packed and covered with shrink film = effective transport protection

Technical Terms of Supply

Detailed information on permissible faults, definition of faults, testing methods and testing units are available upon request. Reduced tolerances are also available upon request. In case of quality complaints the relevant "Technical Terms of Supply" for the application apply to all sales and are binding unless separate written agreements with respect to quality have been entered into.

SCHOTT®, AR-GLAS® and DENSOPACK® are registered trademarks of SCHOTT.

Subject to technical alterations.

We thank our customers and partners for their kind assistance in providing product samples and photos.

Notes

Tubing SCHOTT AG Erich-Schott-Strasse 14 95666 Mitterteich Germany Phone +49 (0)9633/80-0 Fax +49 (0)9633/80-614 info.rohrglas@schott.com www.schott.com/rohrglas