SCHOTT Xensation[®] α

Driven by our innovative power and with years of research in specialty glass, we have given the vision of unbreakable glass a new dimension. Discover the revolutionary composition behind our most drop-resistant cover glass to date, Xensation® α , a lithium-alumino-borosilicate glass (LABS) specifically designed to withstand the challenges of high-end smartphones.

Features

The innovative high-performance cover glass impressively combines the chemical strengthening potential of lithium-alumino-silicate glass (LAS) with the scratch resistance of borosilicate glass and the stability of a powerful glass framework found in glass-ceramics.

Key Benefits

- Superior drop resistance compared to other premium cover glasses with up to 100 % higher resistance on rough and uneven surfaces
- Significantly improved scratch resistance compared to conventional LAS glass, confirmed by the Knoop scratch test

Test results of test with #60 grit sandpaper

Mean values of dummy test series with 0.8 mm thickness, compared to LAS glass; results may vary depending on test set-up

Test results of Knoop scratch test

SCHOTT Xensation® α

Mechanical properties	
Density $ ho$	2.39 g/cm ³
Young's modulus E	80 kN/mm²
Poisson's ratio ν	0.26
Shear modulus G	32 kN/mm²
Vickers hardness HV	
unstrengthened	570
strengthened*	660

Thermal properties	
Coefficient of linear thermal expansion $\alpha_{(20300^{\circ}\text{C})}$	5.3 · 10 ⁻⁶ K ⁻¹
Transformation temperature T_g	577 °C
Viscosity	
Annealing point at 10 ¹³ dPas	589 °C
Softening point 10 ^{7.6} dPas	840 °C
Working point 10 ⁴ dPas	1233 °C

Optical properties					
Wavelength λ [nm]	365	405	518	595	640
Measurement method	FSM-UV	SLP- 2000	SLP- 2000	FSM-LE	SLP- 1000
Refractive index n of core glass	1.528	1.522	1.512	1.508	1.507
Refractive index n of K-exchanged layer*	1.531	1.525	1.514	1.510	1.508
Photoelastic constant C [nm/(cm*MPa)]	32.3	31.6	30.5	30.0	29.8
Transmittance T [%] (t = 0.78 mm)	89	90	91	91	92

Refractive index n of K-exchanged layer	1.531 *	1.525	1.514	1.510	1.508
Photoelastic constant [nm/(cm*MPa)]	C 32.3	31.6	30.5	30.0	29.8
Transmittance T [%] (t = 0.78 mm)	89	90	91	91	92
Electrical properties	(extrapolat	ted)			
	e (extrapolat		Lo	ss tange	nt tan δ

Electrical properties (extrapolated)		
Frequency f_0 [MHz]	Dielectric constant ε	Loss tangent tan δ
54	6.1	0.008
480	6.0	0.009
825	6.0	0.010
912	6.0	0.010
1977	6.0	0.011
2170	6.0	0.011
2986	6.0	0.012

Chemical properties		
Hydrolytic resistance acc. to DIN ISO 719		
Hydrolytic class	HGB 1	
Equivalent of alkali Na ₂ O per gram of glass grains [µg/g]	32	
Acid resistance acc. to DIN 12 116		
Acid class	\$2	
Half surface weight loss after 6 hours [mg/dm²]	1.4	
Alkali resistance acc. to ISO 695		
Alkali class	A2	
Surface weight loss after 3 hours [mg/dm²]	92	

Chemical strengthening*	
Compressive stress CS	capable > 900 MPa
Depth of compressive layer DoCL	capable >180 μm
4-Point bending strength	capable > 800 MPa

Forms supplied**	
Thickness range	0.55 – 0.80 mm
Sheet size	1150 mm x 950 mm

- * Values that can be achieved after chemical strengthening process
- ** Further thicknesses and sheet sizes are available on request

Carbon neutral
naturoffice.com | DE-077-022910
print production

