

SCHOTT® Solar Glass exos

High-performance cover glass for next-generation solar cells

SCHOTT® has established itself as a trusted partner for high-reliability glass solutions in photovoltaic applications, combining scientific expertise with industrial precision to meet the most demanding requirements. SCHOTT® Solar Glass exos extends this legacy engineered specifically for advanced solar cell technologies in orbit.

With enhanced resistance to solarization and optimized UV absorption, SCHOTT® Solar Glass exos delivers superior protection on two levels: it safeguards the glass itself against UV-induced transmission loss and shields the adhesive and cell interfaces from harmful ultraviolet exposure. Combined with a coefficient of thermal expansion precisely matched to III-V multijunction cells, it ensures long-term optical and mechanical stability throughout extended mission lifetimes. Qualification according to ECSS standards is underway to verify endurance under simulated orbital conditions.

Application

These properties make SCHOTT® Solar Glass exos an excellent choice wherever power systems must combine durability, efficiency, and reliability in space.

Ideal for use in:

- High-radiation environments requiring stable optical and thermal properties
- High-efficiency III-V multijunction solar arrays
- Next-generation satellite power systems operating in demanding orbital conditions

General properties

Outstanding transmission

High edge strength

Fire-polished surface

Made to withstand **UV** solarization

Ultra-thin thicknesses

Protection against high-energy particle radiation

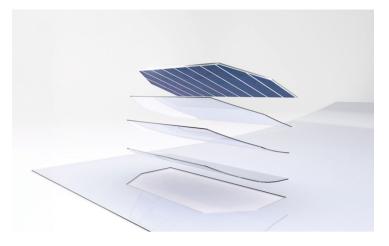
Available in large formats

Specific properties

Solarization stable against high-energy particle radiation

UV absorption to protect adhesive

CTE tailored for III-V-multijunction cells



SCHOTT® Solar Glass exos

Geometrical properties		
		0.150
Thickness*	mm	0.100
		0.050

* Other thicknesses on request

Optical properties			
Refractive index n _d		1.5145	
Edge wavelength $\lambda_{\rm c}$ (τ = 46 %) at t = 0.100 mm	nm	344	

Mechanical properties	Mechanical properties					
Density ρ	g/cm³	2.54				
Young's modulus E	kN/mm²	74.5				
Poisson's ratio μ		0.218				

Spectral transmittance of SCHOTT® Solar Glass exos

Thermal properties		
Coefficient of thermal expansion – CTE $\alpha_{(20;300^{\circ}\text{C})}$	10 ⁻⁶ /K	6.9
Transformation temperature T _g	°C	557

Wavelength $\boldsymbol{\lambda}$ in nm — 100 μm — 100 μm after UV solarization

Transmittance values of SCHOTT® Solar Glass exos at t = 0.100 mm									
	$\tau(\lambda)$ – individual values in %			τ – in % arithmetic mean for the given λ range					
	$\tau_{\scriptscriptstyle 400}$	$\tau_{\scriptscriptstyle 450}$	$\tau_{\scriptscriptstyle 500}$	τ_{600}	$\tau_{_{300-315}}$	$\tau_{_{400-450}}$	$\tau_{600-800}$	$\tau_{_{450-1100}}$	$\tau_{_{900-1800}}$
Uncoated glass	90.2	91.4	91.7	92.0	0.5	91.0	92.1	92.1	92.3
Coated glass, single side anti-reflex	91.2	93.1	93.8	94.4	0.5	92.5	94.4	94.1	93.4

The stated values represent typical production data and are provided without tolerances.

