

SCHOTT Xensation[®] α

Made to survive

Concentrated energy of leading experts

Based on its **leading expertise** and driven by many years of sound research in various specialty glass areas, SCHOTT has come a decisive step closer to achieving its goal of **unbreakable cover glass**.

This became possible as SCHOTT emerged as a **true pioneer** producing borosilicate glass, glass-ceramics and lithium aluminosilicate (LAS) cover glass by using float technology.

SCHOTT's worldwide unequalled **innovation power** has paved the way for those successful new glass developments and created the latest invention: **Xensation**[®] α – a lithium alumino-borosilicate (LABS) glass for high-end smartphones.

This **high-performance cover glass** unites the chemical strengthening potential of LAS glass with the scratch performance of borosilicate glass and a strong glass backbone like in glass-ceramics.

Key benefits of Xensation $^{\circ}\,\alpha$

- Outperforms current market leading cover glasses by up to 100% in set-drop performance on all grounds, including rough surfaces.
- Less sensitive to scratches than conventional LAS glasses shown in Knoop indenter scratch test.

Unique glass composition

Less susceptible to scratches

SCHOTT Xensation[®] α

Mechanical properties	
Density p	2.39 g/cm ³
Young's modulus E	80 kN/mm ²
Poisson's ratio v	0.26
Shear modulus G	32 kN/mm ²
Vickers hardness HV	
unstrengthened	570
strengthened*	660

Optical properties			
Wavelength λ [nm]	365	595	640
Measurement method	FSM-UV	FSM-LE	SLP-1000
Refractive index n of core glass	1.528	1.508	1.507
Refractive index n of K-exchanged layer*	1.531	1.510	1.508
Photoelastic constant C [nm/(cm*MPa)]	32.3	30.0	29.8
Transmittance T [%] (t = 0.78 mm)	89	91	92

Electrical properties (extrapolated)

Frequency f ₀ [MHz]	Dielectric constant ε	Loss tangent tan δ
54	6.1	0.008
480	6.0	0.009
825	6.0	0.010
912	6.0	0.010
1977	6.0	0.011
2170	6.0	0.011
2986	6.0	0.012

All values are typical measured values and refer to unstrengthened glass. * Typical values that can be achieved after chemical strengthening process

** Further thicknesses and sheet sizes are available on request

Thermal properties Coefficient of mean linear thermal expansion α_(20°C - 300°C) Transformation temperature T_g Viscosity

Annealing point at 10 ¹³ dPas	589°C
Softening point at 10 ^{7.6} dPas	840°C
Working point at 10 ⁴ dPas	1233°C

5.3 · 10⁻⁶ K⁻¹

577°C

Chemical properties

Hydrolytic resistance acc. to DIN ISO 719 HGB1 Hydrolytic class Equivalent of alkali Na₂O 32 per gram of glass grains [µg/g] Acid resistance acc. to DIN 12 116 Acid class S2 Half surface weight loss after 6 hours [mg/dm²] 1.4 Alkali resistance acc. to DIN ISO 695 A2 Alkali class Surface weight loss after 3 hours [mg/dm²] 92

Chemical strengthening*	
Compressive stress CS	capable > 900 MPa
Depth of compressive layer DoCL	capable > 180 µm
4-Point bending strength	capable > 800 MPa

Forms supplied**	
Thickness range	0.60 – 0.80 mm
Sheet size	1150 mm x 950 mm

carbon neutral

print production

schott.com/xensation