

SCHOTT B 270[®] The clear choice.

SCHOTT B 270[®] offers outstanding optical performance in a wide range of thicknesses. Suitable for a broad range of applications, customers across a wide variety of industries have relied on this highly transparent, super-white modified soda-lime glass for decades thanks to its high quality.

UV-A – NIR Outstanding

transmission

Homogenous refractive index

High stability against solarization

High coefficient of thermal expansion

Fire-polished surface

Crystal-clear performance

The crown glass B 270° is designed to deliver consistent transmittance of light across a range of wavelengths, from ultraviolet to near-infrared. SCHOTT uses a selection of high-purity raw materials for the manufacture of this modified soda-lime glass to avoid any discoloration, which gives the glass a beautifully pure super-white look and exceptional clarity.

Wide thickness range

SCHOTT ensures that B 270° fits the broad spectrum of customer requirements by offering a wide thickness portfolio. SCHOTT B 270° is available in a thickness range from 0.3 mm up to 10 mm. This means the need for further processing is reduced to a minimum, if not avoided altogether.

Easy to process

Easy processing of B 270[®] enables highly cost-effective processing. One of its advantages is the **fast edge processing** – similar to standard soda-lime glass. The **high CTE** of 9.4 (in $10^{-6} \cdot K^{-1}$) is an unique feature compared to other specialty glass materials and makes it **ideal for thermal toughening**. The **high alkaline content** enables **chemical strengthening**. Thanks to its chemically identical **fire-polished surfaces** on both sides, B 270[®] is well suited for **coating processes**, without additional effort of polishing or tracking of the "tin side".

A broad range of applications

As one of our most popular products, B 270[®] has been relied upon for decades by our customers for a wide variety of applications, from standard optical components to packaging solutions for consumer electronics. A true all-rounder, B 270[®] continues to provide versatility and reliability in a vast number of areas.

Filter substrates

Coating substrates

IC Packaging

Optical components

Biotech

SCHOTT B 270® **Key Properties**

General

Technical data* in mm		
Dimensions	 1.680 x 900 900 x 840 406 x 258 	
Standard thicknesses	 0.9 1.0 1.65 2.0 2.3 2.5 3.0 3.5 4.0 5.0 10.0 	

Thermal

Density ρ

Young's modulus E

Torsion modulus G Knoop hardness

Vickers hardness

Poisson's ratio µ

General Properties		Unit		Value
CTE (Coefficient of ther	mal expansion) α	in 10-6 · K	-1(20 °C; 300 °C)	9.4
Mean specific heat capa	acity c _p	in J/(g⋅K) ((20 °C to 100 °C)	0.8
Transformation tempera	ature T _g	in °C		542
Viscosities	Viscosity Ig	n in dPac	Temperature	tin °C
VISCOSICICS	Viscosity ig	in that as	remperature	
Strain point	14.5		507	
Annealing point	13.0		535	
Softening point	7.6		711	
Mechanical				
Properties		Unit		Value

in g/cm³

in kN/mm²

in kN/mm²

HK 0.1/20

HV 0.2/25

2.56

71.1

0.22

29

500

510

* Other formats and thicknesses upon request

Optical

Properties	Value
Refractive index n _e	1.5251 ± 0.001
Abbe value $\nu_{\rm e}$	58.3 ± 0.6

Transmittance values

Luminous transmittance at thickness in mm	τν _{σ6s} in %	Edge wavelength λc (τ = 0,46) at thickness in mm
0.9	91.9	0.9
2.0	91.7	2.0
6.0	91.6	6.0

Electrical properties

Dielectric constant ϵ r (at ϑ = 25 °C)	Value
at 1 MHz	7.5
at 1 GHz	6.7
at 5 GHz	6.7

Edge wavelength λc ($\tau = 0,46$) at thickness in mm	Wavelength in mm
0.9	300
2.0	310
6.0	323

Dissipation factor tan δ (at ϑ = 25 °C)	Value
at 1 MHz	32 · 10 ⁻⁴
at 1 GHz	59 · 10 ⁻⁴
at 5 GHz	84 · 10 ⁻⁴

Chemical

Hydrolytic resistance (acc. to DIN ISO 719)	Value
Class	HGB 3
Equivalent of alkali per gram glass grains in µg/g	136

Acid resistance (acc. to DIN 12116)	Value
Class	S 2
Half surface weight loss after 6 hours in mg/dm ²	0.7

Alkali resistance (acc. to DIN ISO 695)	Value
Class	A 1
Surface weight loss after 3 hours in mg/dm ²	71

<u>SCHO</u>TT glass made of ideas

SCHOTT B 270®

Spectral transmittance

schott.com