

Negative Temperature Coefficient (NTC) Thermistors are a well-known and widespread method for temperature measurement. Especially for high temperature applications the NTC chip must be sealed in a glass sleeve for protection. When compared to traditional lead glasses, SCHOTT 8360 lead-free specialty glass possesses nearly identical properties, making it an ideal alternative for use cases that require lead glasses. This means that manufacturing processes can easily transition to this specialty glass.

# SCHOTT 8360 - Benefits at a glance



#### Lead-free

 $\cdot$  No special lead disposal concerns



### Low sealing temperatures

- · Identical processing compared to current lead glasses
- · No need to change the manufacturing process



## Highly impermeable glass for long lasting thermistors

- · Glass seals tightly with Cu-sheathed wire
- · Existing electrical connections with Cu-sheathed wire are maintained



### **Optimized dielectric properties**

- · High dielectric constant
- · Low dielectric loss

Learn more





Every industry sector, including the consumer, health, automotive, and technology industry, faces increasing regulatory concerns regarding human health and environmental responsibility. A prime example is the substance lead, which is gradually and rapidly being prohibited from all applications. Being ahead of possible changes is an essential step to stay competitive. For this reason, SCHOTT is launching a lead-free glass for the encapsulation of an NTC Thermistor chip which behaves in the production process just like a soon outdated lead glass.





SCHOTT 8360 - lead-free

**NTC Thermistor** 

### Comparison example:

|                                                                                     | Lead-free<br>SCHOTT 8360 | Lead glass<br>(e.g. SCHOTT 8531) |                                  |
|-------------------------------------------------------------------------------------|--------------------------|----------------------------------|----------------------------------|
| Coefficient of mean linear thermal expansion $\alpha$ (20°C; 300°C)                 | 9.1                      | 9.1                              | 10 <sup>-6</sup> K <sup>-1</sup> |
| Transformation temperature Tg                                                       | 465                      | 435                              | °C                               |
| Glass temperature at viscosity $\eta$ in dPa $\cdot$ s $10^{7.6}$ (softening point) | 575                      | 585                              | °C                               |
| Glass temperature at viscosity $\eta$ in dPa $\cdot$ s $10^4$ (working point)       | 745                      | 820                              | °C                               |
| Dielectric constant $\epsilon$ for 1 MHz at 25°C                                    | 7.3                      | 9.5                              |                                  |
| Dielectric loss factor tan δ for 1 MHz at 25°C                                      | 24                       | 9                                | 10-4                             |

#### **Dimensional characteristics**

Other OD, ID and lengths upon request.

