

Accredited Testing Laboratories SCHOTT

Complete list of all accredited testing methods in the flexible scope according to the conformity assessment body D-PL-14645-01-00

The testing laboratory hereby publishes the list of all testing methods in the flexible scope of accreditation of the CAB with reference to

Working area FB 2.3 Material Testing and Materials Technology (destructive testing),

Partial certificate annex D-PL-14645-01-02

Coding: 01_LIST_00003 (Excerpt)

Version: 15.0

Issue date: 28-Oct-2025

Updates/changes are marked in green. Newly introduced procedures according to category A, B or C are marked with "NEW in flexible scope".

Within the marked test scopes, the testing laboratory is permitted to do the following without having to inform and obtain prior approval from DAkkS:

[Flex A] The extension of the scope of accreditation by standardized or equivalent test methods

with different issue dates within a defined testing scope.

[Flex B] Includes category A as well as the extension of the scope of accreditation by

standardized or equivalent test methods within a defined test scope. Category B includes - where applicable - new specifications for test objects, provided that these can

be determined using the procedure within the test scope.

[Flex C] Includes categories A and B as well as the extension of the scope of accreditation by

modified as well as further and newly developed test methods (e.g. in-house

procedures) within a defined test area.

The original complete certificate and the partial certificates issued by DAkkS for the above-mentioned conformity assessment body can be found at www.dakks.de, Accredited Bodies, D-PL-14645-01-00. The testing procedures listed there are exemplary.

Tests are carried out in the following working areas:

Testing of the chemical resistance of glasses, glass-ceramics, pharmaceutical packaging materials, decorations on glasses or glass-ceramics and other materials;

Determination of the physical properties (thermal, thermodynamic, elastic, electrical, optical and surface properties) of glasses, glass-ceramics, ceramics and composite materials, as well as the calculation of the parameters derived from these measured variables;

Qualitative and quantitative analysis of element depth profiles in glasses, glass-ceramics, ceramics and thin films;

High-resolution imaging of glasses, glass-ceramics, powders, metals, surfaces, layers and fracture surfaces;

Examination of glasses, glass articles and mold tools, e.g. as part of defect and damage analysis; Determination of geometric parameters (e.g. pore sizes, particle sizes, layer thicknesses, roughness);

Determination of solid defects in glasses and glass-ceramics in/on surfaces, e.g. for glass defect diagnosis;

Corrosion, leaching and hydration tests;

Strength tests and fracture analysis (fractography) on glasses, glass-ceramics, plastics and composite materials (material and product properties);

Determination of the volume content of gaseous substances in inclusions of oxidic materials such as glasses and glass-ceramics;

Locations:

SCHOTT AG
Accredited Testing Laboratories SCHOTT
Hattenbergstraße 10, 55122 Mainz

SCHOTT AG
Accredited Testing Laboratories SCHOTT
Otto-Schott-Straße 2, 55127 Mainz

SCHOTT AG
Accredited Testing Laboratories SCHOTT
400 York Ave, Duryea/PA 18642 USA

The testing laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 for performing the conformity assessment activities listed in this annex. The testing laboratory fulfills any additional legal and normative requirements, including those in relevant sectoral programs, provided that these are expressly confirmed below.

The requirements for the management system are written in the relevant language and are fully compliant with the principles of DIN EN ISO 9001.

Laboratory location Otto-Schott-Straße 2, 55127 Mainz

- 1 Determination of the chemical resistance of glasses, glass ceramics, decorations on glasses or glass ceramics and other materials
- 1.1 Determination of resistance to liquid media Mass loss and/or time needed for defined removal in μm by differential weighing and visual inspection [Flex C]

ISO 8424 2023-07	Raw optical glass - Resistance to attack by aqueous acidic solutions - Test method and classification
ISO 9689 1990-12	Raw optical glass - Testing of the resistance to attack by aqueous alkaline phosphate-containing solutions at 50°C - Testing and classification
ISO 10629 1996-07	Raw optical glass - Resistance to attack by aqueous alkaline solutions at 50°C - Test method and classification
ISO 695 1991-05	Glass; resistance to attack by a boiling aqueous solution of mixed alkali; method of test and classification
DIN 12116 2001-03	Testing of glass - Resistance to attack by a boiling aqueous solution of hydrochloric acid - Method of test and classification
JOGIS 2007-03	Japanese Optical Glass Industrial Standards - Measuring Method for Chemical Durability of Optical Glass (Powder Method)
YBB00342004-2015 2015-00	Test for Resistance to Attack of Glass by Boiling Hydrochloric Acid
YBB00352004-2015 2015-00	Test for Resistance to Attack of Glass by Boiling Aqueous Solution of Mixed Alkali
01_SOP_00472 2025-08	Determination of the chemical resistance of glasses, glass ceramics and other materials after chemical stresses by differential weighing and visual inspection

1.2 Staining, Color and Gloss changes, Abrasion Resistance - Visual Inspection [Flex C]

1.3

USP <211> Arsenic <211> Method I 2023-06

01 SOP 00476 2025-08

Determination of staining, color and gloss changes, abrasion resistence of glasses, glass ceramics and other materials after chemical stresses by visual inspection

2 Thermal Characterization of glasses, glass ceramics, ceramics, sinter glasses, composites with glass or glass ceramic as well as raw materials of glass industry

2.1 Testing of thermal expansion (static, dynamic) of glasses, glass ceramics and plastics by inductive and optical methods for a temperature range of -180°C to 1300°C [Flex C]

DIN 51045-1 Determination of the thermal expansion of solids -

2005-08 Part 1: Basic rules

ISO 7991 Glass - Determination of coefficient of mean linear

1987-12 thermal expansion

YBB00202003-2015 Test for Coefficient of Mean Linear Thermal Expansion

2015-00

01 SOP 00470 Determination of the static and dynamic thermal 2025-07 expansion behaviour of solids by dilatometry and

thermomechanical analysis

01_SOP_00469 Determination of the compaction of glasses and glass

2025-07 ceramics by length comparison measurement

2.2 Determination of viscosity of glasses for a viscosity range of 100-5 x 1013 dPa s [Flex C]

ISO 7884-1 Glass - Viscosity and viscometric fixed points; Part 1: 1987-12 Principles for determining viscosity and viscometric fixed

points

ISO 7884-2 Glass - Viscosity and viscometric fixed points; Part 2: 1987-12 Determination of viscosity by rotation viscometers

ISO 7884-3 1987-12	Glass - Viscosity and viscometric fixed points; Part 3: Determination of viscosity by fibre elongation viscometer
ISO 7884-4 1987-12	Glass - Viscosity and viscometric fixed points; Part 4: Determination of viscosity by beam bending
ISO 7884-7 1987-12	Glass - Viscosity and viscometric fixed points; Part 7: Determination of annealing point and strain point by beam bending
ISO 7884-8 1987-12	Glass - Viscosity and viscometric fixed points; Part 8: Determination of (dilatometric) transformation temperature
01_SOP_00471 2025-07	Determination of the viscosity properties of glasses by beam bending, fibre elongation and rotation viscosimeters as well as dilatometric transformation temperature

2.3 Determination of the rheological parameters of solids, slurries and highly viscous liquids [Flex C]

01_SOP_00671 2025-08	Determination of rheological and mechanical properties of solids, liquids, and suspensions using rheometric measurement methods
01_SOP_00715 2025-08	Determination of rheological parameters in suspensions and liquids using rheometric measurement methods

2.4 Determination of the density of glasses, glass ceramics, ceramics and other materials [Flex B]

ISO 2781	Rubber, vulcanized or thermoplastic – Determination of
2018-06	density
ASTM C 693	Standard Test Method for Density of Glass by Buoyancy
2024-00	(Modification: Use of a surfactant additive as well as
	smaller sample mass)

2.5 Thermal analysis (differential thermal analysis (DTA), differential scanning calorimetry (DSC) and calorimetry (specific heat)) on glasses, glass ceramics, ceramics and raw materials (powders) [Flex C]

DIN 51006 Thermal analysis (TA) - Thermogravimetry (TG) -

2024-02 Principles

DIN 51007-1 Thermal analysis - Differential thermal analysis (DTA) 2024-08 and differential scanning calorimetry (DSC) - General

Principles

01 SOP 00156 Determination of the true and average specific heat

2025-06 capacity of solids by calorimetric methods

2.6 Determination of the thermal diffusity of solids by flash method and calculation of the thermal conductivity [Flex B]

ASTM E 1461 Standard Test Method for Thermal Diffusivity by the

2013-00 Flash Method

2.7 Determination of seal stress in glass by polarization microscopy [Flex A]

ISO 4790 Glass-to-glass sealings; determination of stresses

1992-05

2.8 Determination of crystallization properties of glasses by gradient furnace method [Flex C]

ASTM C 829 Standard Practices for Measurement of Liquidus

1981-00 Temperature of Glass by the Gradient Furnace Method

01_SOP_00486 Determination of the crystallization properties of glasses 2025-07 and glass ceramics by the gradient furnace method

2.9 Determination of Young's Modulus, Shear Modulus and Poisson's constant of glass, glass ceramic and ceramic by resonance method [Flex C]

ASTM C 1259 Standard Test Method for Dynamic Youngs Modulus, 2021-00 Shear Modulus, and Poissons Ratio for Advanced

Ceramics by Impulse Excitation of Vibration

01_SOP_00502 2025-07 Determination of the dynamic Young's modulus, shear modulus and Poisson's coefficient of glasses, glass ceramics, ceramics and metals by impulse excitation of vibrations

3 Electrical characterization of glasses, glass-ceramics, ceramics and other materials

3.1 Determination of the electrical contact resistance of glasses, glass-ceramics, ceramics and other materials [Flex C]

DIN 52326 1986-05 Testing of glass; determination of electrical resistivity

01_SOP_00511

2025-07

Determination of the specific electric volume resistance of glasses and glass ceramics by current and voltage

measurements

3.2 Determination of dielectric properties of glasses, glass ceramics, ceramics and other materials in the GHz range [Flex A]

IEC 61189-2-721 2015-04 Test methods for electrical materials, printed boards and other interconnection structures and assemblies – Part 2-721: Test methods for materials for interconnection structures – Measurement of relative permittivity and loss tangent for copper clad laminate at microwave frequency using split post dielectric resonator (Modifikation: Die Probenvorkonditionierung und die

Luftfeuchte.)

- 4 Optical characterization of glasses, glass ceramics, ceramics, sintered glasses, composites with glass or glass ceramics as well as raw materials of the glass industry
- 4.1 Determination of transmission, reflection, remission, scattered light/haze, solarization, spectral color measurement, refractive index and dispersion, fluorescence of glasses, glass ceramics, liquids by spectroscopy [Flex C]

Messung erfolgen bei (25 ± 5) °C und ungeregelter

ISO 15368 Optics and optical instruments - Measurement of

2021-03 reflectance of plane surfaces and transmittance of plane

parallel elements

01_SOP_00487 Determination of the spectral transmission, remission, 2025-08 reflection, scattering, color value and solarization of solids, especially glasses and glass ceramics, plastics and liquids by optical spectroscopy 01 SOP 00488 Determination of the refractive index and dispersion of 2025-08 glasses, glass ceramics, plastics and solids by prism coupler method 01 SOP 00490 Determination of the spectral fluorescence properties, 2025-08 decay time and quantum yield of glasses, glass ceramics, solids and liquids by fluorescence spectroscopy Anal. Chem. 2010, 82, Recommendations for Fluorescence Instrument qualification: The new ASTM Standard Guide - Paul de p. 2129-2133

4.2 Ellipsometric characterization of coatings and uncoated materials [Flex B]

Rose, Ute Resch-Genger

DIN EN ISO 23131 Ellipsometry - Principles

2023-01

2010-00

4.3 Stress measurements and stress-optical coefficient [Flex C]

ASTM C 770 Standard Test Method for Measurement of Glass Stress -2016-00 **Optical Coefficient**

ASTM C 1422/ C1422 M Standard Specification for Chemically Strengthened Flat

20 Glass

2020-00a

01 SOP 00509 Determination of mechanical tensions, birefringence and 2025-07

the stress-optical coefficient of transparent solids by

polarization-optical measurement methods

5 Characterization of glasses, glass ceramics, ceramics, metals, plastics and composite materials in micro and surface area

5.1 by Scanning Electron Microscopy/Energy Dispersive X-ray spectroscopy (SEM/EDX) [Flex C]

ISO 22309 Microbeam analysis	– Quantitative analysis using
------------------------------	-------------------------------

2011-10 energy-dispersive spectrometry (EDS) for elements with

an atomic number of 11 (Na) or above

High-resolution morphological surface characterization 01 SOP 00491

2025-08 on glasses, glass ceramics, ceramics, metals, solid and

> composite materials by SEM as well as qualitative and quantitative analysis of surface composition by EDX

5.2 by topographic methods (WLI, AFM, Laser-Interferometry) [Flex C]

01_SOP_00489	Topographic determination on glasses, glass ceramics,
2025-08	ceramics, metals, plastics and composite materials by

ceramics, metals, plastics and composite materials by

white-light interference microscopy

01 SOP 00752 Measurement of wavefront deformation and

2025-08 determination of the derived parameters TTV and

flatness of solids by Fizeau phase laser interferometry

5.3 by Light Microscopy [Flex C]

01_SOP_00501 2025-09

5.4 by Time-of-Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) [Flex C]

01_SOP_00493 Qualitative analysis of the surface composition of 2025-08 glasses, glass ceramics, ceramics, metals, plastics,

composite materials and solids by ToF-SIMS

5.5 by Vibrational Spectroscopy [Flex A]

JIS K 0137 General rules for Raman spectrometry

USP <1854> Mid-infrared spectroscopy - Theory and practice

2015-05

2010-05

6 Strength tests on glases, glass ceramics, plastics and composites, Determination of material and product properties by pressure and tensile tests [Flex C]

ISO 14704 2016-04	Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for flexural strength of monolithic ceramics at room temperature
ISO 7458 2004-03	Glass containers - Internal pressure resistance - Test methods
ISO 8113 2004-03	Glass containers - Resistance to vertical load - Test method
DIN EN 843-1 2008-08	Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature Part 1: Determination of flexural strength
ISO 1288-5 2016-02	Glass in building - Determination of the bending strength of glass - Part 5: Coaxial double ring test on flat specimens with small test surface areas
01_SOP_00495 2025-07	Determination of the strength of brittle materials, plastics and composite materials by tensile and pressure tests with universal testing machines

7 Fracture analysis (fractography) on glasses, glass ceramics, ceramics and plastics by light microscopic methods [Flex C]

DIN EN 843-6 2009-12	Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature - Part 6: Guidance for fractographic investigation
ASTM C 1256 2025-00a	Standard Practice for Interpreting Glass Fracture Surface Features
01_SOP_00496 2025-09	Fractography/Fracture analysis on brittle materials

8 Determination of the volume fractions of gaseous substances in inclusions of glasses, glass ceramics, oxide materials and stones by mass spectrometry and Raman spectroscopy [Flex C]

JIS K 0137 General rules for Raman spectrometry

2010-05

01_SOP_00497 Determination of volume fractions of gaseous

2025-05 substances in inclusions of glasses, glass ceramics, oxide

materials and stones by mass spectrometry

01_SOP_00504 Determination of volume fractions of gaseous

2025-07 substances in inclusions of glasses, glass ceramics, oxide

materials and stones by Raman spectroscopy

<u>Laboratory location Hattenbergstraße 10, 55122 Mainz</u>

9 Testing of thermal expansion (static, dynamic) of glasses, glass ceramics, ceramics, sinter materials, plastics and composites by inductive and optical methods for a temperature range of -50°C to +100°C [Flex C]

DIN 51045-1 Determination of the thermal expansion of solids -

2005-08 Part 1: Basic rules

ISO 7991 Glass - Determination of coefficient of mean linear

1987-12 thermal expansion

01_SOP_00470 Determination of the static and dynamic thermal

2025-07 expansion behaviour of solids by dilatometry and

thermomechanical analysis

10 Determination of optical properties (transmission and derived parameters, refractive index and dispersion) preferably on glasses by optical spectroscopy and optical refractography [Flex C]

ISO 15368 Optics and optical instruments - Measurement of

2021-03 reflectance of plane surfaces and transmittance of plane

parallel elements

01_SOP_00487 Determination of the spectral transmission, remission,

2025-08 reflection, scattering, color value and solarization of

solids, especially glasses and glass ceramics, plastics and

liquids by optical spectroscopy

01_SOP_00510 2025-07 Determination of the refractive index and dispersion of glasses with standard and/or precision accuracy by

optical refractography

Laboratory location 400 York Ave, Duryea/PA 18642 USA

11 Characterization of glasses, glass ceramics, ceramics, metals, plastics and composite materials in micro and surface area as well as fracture analysis (fractography)

11.1 by Scanning Electron Microscopy/ Energy Dispersive X-ray spectroscopy (SEM/EDX) [Flex C]

ISO 22309 Microbeam analysis – Quantitative analysis using 2011-10 energy-dispersive spectrometry (EDS) for elements with

an atomic number of 11 (Na) or above

01_SOP_00491 High-resolution morphological surface characterization 2025-09 on glasses, glass ceramics, ceramics, metals, solid and

on glasses, glass ceramics, ceramics, metals, solid and composite materials by SEM as well as qualitative and quantitative analysis of surface composition by EDX

11.2 by Light Microscopy Methods [Flex C]

01_SOP_00501 Sample characterization of glasses, glass ceramics,

2025-09 ceramics, metals, plastics, composite and solid materials

by light microscopy